Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
J Immunol ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578283

ABSTRACT

NK cells in the peripheral blood of severe COVID-19 patients exhibit a unique profile characterized by activation and dysfunction. Previous studies have identified soluble factors, including type I IFN and TGF-ß, that underlie this dysregulation. However, the role of cell-cell interactions in modulating NK cell function during COVID-19 remains unclear. To address this question, we combined cell-cell communication analysis on existing single-cell RNA sequencing data with in vitro primary cell coculture experiments to dissect the mechanisms underlying NK cell dysfunction in COVID-19. We found that NK cells are predicted to interact most strongly with monocytes and that this occurs via both soluble factors and direct interactions. To validate these findings, we performed in vitro cocultures in which NK cells from healthy human donors were incubated with monocytes from COVID-19+ or healthy donors. Coculture of healthy NK cells with monocytes from COVID-19 patients recapitulated aspects of the NK cell phenotype observed in severe COVID-19, including decreased expression of NKG2D, increased expression of activation markers, and increased proliferation. When these experiments were performed in a Transwell setting, we found that only CD56bright CD16- NK cells were activated in the presence of severe COVID-19 patient monocytes. O-link analysis of supernatants from Transwell cocultures revealed that cultures containing severe COVID-19 patient monocytes had significantly elevated levels of proinflammatory cytokines and chemokines, as well as TGF-ß. Collectively, these results demonstrate that interactions between NK cells and monocytes in the peripheral blood of COVID-19 patients contribute to NK cell activation and dysfunction in severe COVID-19.

2.
Metabolomics ; 19(11): 91, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880481

ABSTRACT

BACKGROUND: Preterm birth is a leading cause of death in children under the age of five. The risk of preterm birth is increased by maternal HIV infection as well as by certain antiretroviral regimens, leading to a disproportionate burden on low- and medium-income settings where HIV is most prevalent. Despite decades of research, the mechanisms underlying spontaneous preterm birth, particularly in resource limited areas with high HIV infection rates, are still poorly understood and accurate prediction and therapeutic intervention remain elusive. OBJECTIVES: Metabolomics was utilized to identify profiles of preterm birth among pregnant women living with HIV on two different antiretroviral therapy (ART) regimens. METHODS: This pilot study comprised 100 mother-infant dyads prior to antiretroviral initiation, on zidovudine monotherapy or on protease inhibitor-based antiretroviral therapy. Pregnancies that resulted in preterm births were matched 1:1 with controls by gestational age at time of sample collection. Maternal plasma and blood spots at 23-35 weeks gestation and infant dried blood spots at birth, were assayed using an untargeted metabolomics method. Linear regression and random forests classification models were used to identify shared and treatment-specific markers of preterm birth. RESULTS: Classification models for preterm birth achieved accuracies of 95.5%, 95.7%, and 80.7% in the untreated, zidovudine monotherapy, and protease inhibitor-based treatment groups, respectively. Urate, methionine sulfone, cortisone, and 17α-hydroxypregnanolone glucuronide were identified as shared markers of preterm birth. Other compounds including hippurate and N-acetyl-1-methylhistidine were found to be significantly altered in a treatment-specific context. CONCLUSION: This study identified previously known as well as novel metabolomic features of preterm birth in pregnant women living with HIV. Validation of these models in a larger, independent cohort is necessary to ascertain whether they can be utilized to predict preterm birth during a stage of gestation that allows for therapeutic intervention or more effective resource allocation.


Subject(s)
Anti-HIV Agents , HIV Infections , Pregnancy Complications, Infectious , Premature Birth , Infant , Child , Pregnancy , Infant, Newborn , Female , Humans , HIV Infections/drug therapy , Zidovudine/therapeutic use , Pregnant Women , Pregnancy Complications, Infectious/drug therapy , Anti-HIV Agents/therapeutic use , Pilot Projects , Metabolomics , Protease Inhibitors/therapeutic use
3.
Front Reprod Health ; 5: 1224474, 2023.
Article in English | MEDLINE | ID: mdl-37795521

ABSTRACT

Background: Adolescent girls and young women (AGYW) in South Africa are at a higher risk of acquiring HIV. Despite the increasing availability of daily oral pre-exposure prophylaxis (PrEP) for HIV prevention, knowledge on PrEP use during pregnancy and postpartum periods at antenatal care (ANC) facilities remains inadequate. Methods: Data from HIV-uninfected pregnant women in Cape Town, South Africa, were used in this study. These women aged 16-24 years were enrolled in the PrEP in pregnancy and postpartum (PrEP-PP) cohort study during their first ANC visit. Using the PrEP cascade framework, the outcomes of the study were PrEP initiation (prescribed tenofovir disoproxil fumarate and emtricitabine at baseline), continuation (returned for prescription), and persistence [quantifiable tenofovir diphosphate (TFV-DP) in dried blood samples]. The two primary exposures of this study were risk perception for HIV and baseline HIV risk score (0-5), which comprised condomless sex, more than one sexual partner, partner living with HIV or with unknown serostatus, laboratory-confirmed sexually transmitted infections (STIs), and hazardous alcohol use before pregnancy (Alcohol Use Disorders Identification Test for Consumption score ≥ 3). Logistic regression was used to examine the association between HIV risk and PrEP, adjusting for a priori confounders. Results: A total of 486 pregnant women were included in the study, of which 16% were "adolescents" (aged 16-18 years) and 84% were "young women" (aged 19-24 years). The adolescents initiated ANC later than the young women [median = 28 weeks (20-34) vs. 23 weeks (16-34), p = 0.04]. Approximately 41% of the AGYW were diagnosed with sexually transmitted infection at baseline. Overall, 83% of the AGYW initiated PrEP use during their first ANC. The percentage of PrEP continuation was 63% at 1 month, 54% at 3 months, and 39% at 6 months. Approximately 27% consistently continued PrEP use through 6 months, while 6% stopped and restarted on PrEP use at 6 months. With a higher risk score of HIV (≥2 vs. ≤1), the AGYW showed higher odds of PrEP continuation [adjusted odds ratio: 1.85 (95% CI: 1.12-3.03)] through 6 months, adjusting for potential confounders. Undergoing the postpartum period (vs. pregnant) and having lower sexual risk factors were found to be the barriers to PrEP continuation. TFV-DP concentration levels were detected among 49% of the AGYW, and 6% of these women had daily adherence to PrEP at 3 months. Conclusions: AGYW were found to have high oral PrEP initiation, but just over one-third of these women continued PrEP use through 6 months. Pregnant AGYW who had a higher risk of acquiring HIV (due to condomless sex, frequent sex, and STIs) were more likely to continue on PrEP use through the postpartum period. Pregnant and postpartum AGYW require counseling and other types of support, such as community delivery and peer support to improve their effective PrEP use through the postpartum period. Clinical Trial Number: ClinicalTrials.gov, NCT03826199.

4.
Front Immunol ; 14: 1197326, 2023.
Article in English | MEDLINE | ID: mdl-37398658

ABSTRACT

Introduction: Severe COVID-19 illness is characterized by an overwhelming immune hyperactivation. Autoantibodies against vascular, tissue, and cytokine antigens have been detected across the spectrum of COVID-19. How these autoantibodies correlate with COVID-19 severity is not fully defined. Methods: We performed an exploratory study to investigate the expression of vascular and non-HLA autoantibodies in 110 hospitalized patients with COVID-19 ranging from moderate to critically ill. Relationships between autoantibodies and COVID- 19 severity and clinical risk factors were examined using logistic regression analysis. Results: There were no absolute differences in levels of expression of autoantibodies against angiotensin II receptor type 1 (AT1R) or endothelial cell proteins between COVID-19 severity groups. AT1R autoantibody expression also did not differ by age, sex, or diabetes status. Using a multiplex panel of 60 non- HLA autoantigens we did identify seven autoantibodies that differed by COVID-19 severity including myosin (myosin; p=0.02), SHC-transforming protein 3 (shc3; p=0.07), peroxisome proliferator-activated receptor gamma coactivator 1-beta (perc; p=0.05), glial-cell derived neurotrophic factor (gdnf; p=0.07), enolase 1 (eno1; p=0.08), latrophilin-1 (lphn1; p=0.08), and collagen VI (coll6; p=0.05) with greater breadth and higher expression levels seen in less severe COVID-19. Discussion: Overall, we found that patients hospitalized with COVID-19 demonstrate evidence of auto-reactive antibodies targeting endothelial cells, angiotensin II receptors, and numerous structural proteins including collagens. Phenotypic severity did not correlate with specific autoantibodies. This exploratory study underscores the importance of better understanding of the role of autoimmunity in COVID-19 disease and sequelae.


Subject(s)
Autoantibodies , COVID-19 , Humans , Endothelial Cells , Autoimmunity , Risk Factors
5.
AIDS ; 37(10): 1583-1591, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37199568

ABSTRACT

BACKGROUND: Infancy is an important developmental period when the microbiome is shaped. We hypothesized that earlier antiretroviral therapy (ART) initiation would attenuate HIV effects on microbiota in the mouth. METHODS: Oral swabs were collected from 477 children with HIV (CWH) and 123 children without (controls) at two sites in Johannesburg, South Africa. CWH had started ART less than 3 years of age; 63% less than 6 months of age. Most were well controlled on ART at median age 11 years when the swab was collected. Controls were age-matched and recruited from the same communities. Sequencing of V4 amplicon of 16S rRNA was done. Differences in microbial diversity and relative abundances of taxa were compared between the groups. RESULTS: CWH had lower alpha diversity than controls. Genus-level abundances of Granulicatella, Streptococcus, and Gemella were greater and Neisseria and Haemophilus less abundant among CWH than controls. Associations were stronger among boys. Associations were not attenuated with earlier ART initiation. Shifts in genus-level taxa abundances in CWH relative to controls were most marked in children on lopinavir/ritonavir regimens, with fewer shifts seen if on efavirenz ART regimens. CONCLUSION: A distinct profile of less diverse oral bacterial taxa was observed in school-aged CWH on ART compared with uninfected controls suggesting modulation of microbiota in the mouth by HIV and/or its treatments. Earlier ART initiation was not associated with microbiota profile. Proximal factors, including current ART regimen, were associated with contemporaneous profile of oral microbiota and may have masked associations with distal factors such as age at ART initiation.


Subject(s)
HIV Infections , Microbiota , Male , Child , Humans , HIV Infections/drug therapy , South Africa , RNA, Ribosomal, 16S/genetics , Mouth
6.
Front Immunol ; 14: 1152538, 2023.
Article in English | MEDLINE | ID: mdl-37251388

ABSTRACT

Introduction: Factors influencing vaccine immune priming in the first year of life involve both innate and adaptive immunity but there are gaps in understanding how these factors sustain vaccine antibody levels in healthy infants. The hypothesis was that bioprofiles associated with B cell survival best predict sustained vaccine IgG levels at one year. Methods: Longitudinal study of plasma bioprofiles in 82 term, healthy infants, who received standard recommended immunizations in the United States, with changes in 15 plasma biomarker concentrations and B cell subsets associated with germinal center development monitored at birth, soon after completion of the initial vaccine series at 6 months, and prior to the 12-month vaccinations. Post vaccination antibody IgG levels to Bordetella pertussis, tetanus toxoid, and conjugated Haemophilus influenzae type B (HiB) were outcome measures. Results: Using a least absolute shrinkage and selection operator (lasso) regression model, cord blood (CB) plasma IL-2, IL-17A, IL-31, and soluble CD14 (sCD14) were positively associated with pertussis IgG levels at 12 months, while CB plasma concentrations of APRIL and IL-33 were negatively associated. In contrast, CB concentrations of sCD14 and APRIL were positively associated with sustained tetanus IgG levels. A separate cross-sectional analysis of 18 mother/newborn pairs indicated that CB biomarkers were not due to transplacental transfer, but rather due to immune activation at the fetal/maternal interface. Elevated percentages of cord blood switched memory B cells were positively associated with 12-month HiB IgG levels. BAFF concentrations at 6 and 12 months were positively associated with pertussis and HiB IgG levels respectively. Discussion: Sustained B cell immunity is highly influenced by early life immune dynamics beginning prior to birth. The findings provide important insights into how germinal center development shapes vaccine responses in healthy infants and provide a foundation for studies of conditions that impair infant immune development.


Subject(s)
Whooping Cough , Infant, Newborn , Humans , Infant , Longitudinal Studies , Fetal Blood , Cross-Sectional Studies , Lipopolysaccharide Receptors , Tetanus Toxoid , Immunoglobulin G
7.
Int J Med Microbiol ; 313(3): 151580, 2023 May.
Article in English | MEDLINE | ID: mdl-37121094

ABSTRACT

Allogeneic Hematopoietic Cell Transplantation (HCT) offers children with life-threatening diseases a chance at survival. Complications from graft-versus-host disease (GVHD, Stages 0-4) represent a significant cause of morbidity and mortality which has been recently associated with gut dysbiosis the adult HCT population. Here, our objective was to conduct a prospective, longitudinal cohort study in nine pediatric allogeneic HCT participants by collecting longitudinally post-HCT stool specimens up to 1 year. Stool microbiota analyses showed that allogeneic HCT and antibiotic therapy lead to acute shifts in the diversity of the gut microbiota with those experiencing stages 3-4 gut GVHD having significantly greater microbiota variation over time when compared to control participants (p = 0.007). Pre-HCT microbiota diversity trended towards an inverse relationship with gut microbiota stability over time, however, this did not reach statistical significance (p = 0.05). Future large prospective studies are necessary to elucidate the mechanisms underlying these dynamic changes in the gut microbiota following pediatric allogeneic HCT.


Subject(s)
Gastrointestinal Microbiome , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Adult , Humans , Child , Prospective Studies , Longitudinal Studies , Graft vs Host Disease/etiology , Graft vs Host Disease/therapy , Hematopoietic Stem Cell Transplantation/adverse effects
8.
Front Immunol ; 14: 1100594, 2023.
Article in English | MEDLINE | ID: mdl-36860850

ABSTRACT

Introduction: While antibodies raised by SARS-CoV-2 mRNA vaccines have had compromised efficacy to prevent breakthrough infections due to both limited durability and spike sequence variation, the vaccines have remained highly protective against severe illness. This protection is mediated through cellular immunity, particularly CD8+ T cells, and lasts at least a few months. Although several studies have documented rapidly waning levels of vaccine-elicited antibodies, the kinetics of T cell responses have not been well defined. Methods: Interferon (IFN)-γ enzyme-linked immunosorbent spot (ELISpot) assay and intracellular cytokine staining (ICS) were utilized to assess cellular immune responses (in isolated CD8+ T cells or whole peripheral blood mononuclear cells, PBMCs) to pooled peptides spanning spike. ELISA was performed to quantitate serum antibodies against the spike receptor binding domain (RBD). Results: In two persons receiving primary vaccination, tightly serially evaluated frequencies of anti-spike CD8+ T cells using ELISpot assays revealed strikingly short-lived responses, peaking after about 10 days and becoming undetectable by about 20 days after each dose. This pattern was also observed in cross-sectional analyses of persons after the first and second doses during primary vaccination with mRNA vaccines. In contrast, cross-sectional analysis of COVID-19-recovered persons using the same assay showed persisting responses in most persons through 45 days after symptom onset. Cross-sectional analysis using IFN-γ ICS of PBMCs from persons 13 to 235 days after mRNA vaccination also demonstrated undetectable CD8+ T cells against spike soon after vaccination, and extended the observation to include CD4+ T cells. However, ICS analyses of the same PBMCs after culturing with the mRNA-1273 vaccine in vitro showed CD4+ and CD8+ T cell responses that were readily detectable in most persons out to 235 days after vaccination. Discussion: Overall, we find that detection of spike-targeted responses from mRNA vaccines using typical IFN-γ assays is remarkably transient, which may be a function of the mRNA vaccine platform and an intrinsic property of the spike protein as an immune target. However, robust memory, as demonstrated by capacity for rapid expansion of T cells responding to spike, is maintained at least several months after vaccination. This is consistent with the clinical observation of vaccine protection from severe illness lasting months. The level of such memory responsiveness required for clinical protection remains to be defined.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , 2019-nCoV Vaccine mRNA-1273 , Cross-Sectional Studies , Leukocytes, Mononuclear , COVID-19/prevention & control , Vaccination , Cytokines , Antibodies, Viral , Enzyme-Linked Immunospot Assay
9.
J Infect Dis ; 227(2): 236-245, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36082433

ABSTRACT

BACKGROUND: There are limited data on how coronavirus disease 2019 (COVID-19) severity, timing of infection, and subsequent vaccination impact transplacental transfer and persistence of maternal and infant antibodies. METHODS: In a longitudinal cohort of pregnant women with polymerase chain reaction-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, maternal/infant sera were collected at enrollment, delivery/birth, and 6 months. Anti-SARS-CoV-2 spike immunoglobulin (Ig)G, IgM, and IgA were measured by enzyme-linked immunosorbent assay. RESULTS: Two-hundred fifty-six pregnant women and 135 infants were enrolled; 148 maternal and 122 neonatal specimens were collected at delivery/birth; 45 maternal and 48 infant specimens were collected at 6 months. Sixty-eight percent of women produced all anti-SARS-CoV-2 isotypes at delivery (IgG, IgM, IgA); 96% had at least 1 isotype. Symptomatic disease and vaccination before delivery were associated with higher maternal IgG at labor and delivery. Detectable IgG in infants dropped from 78% at birth to 52% at 6 months. In the multivariate analysis evaluating factors associated with detectable IgG in infants at delivery, significant predictors were 3rd trimester infection (odds ratio [OR] = 4.0), mild/moderate disease (OR = 4.8), severe/critical disease (OR = 6.3), and maternal vaccination before delivery (OR = 18.8). No factors were significant in the multivariate analysis at 6 months postpartum. CONCLUSIONS: Vaccination in pregnancy post-COVID-19 recovery is a strategy for boosting antibodies in mother-infant dyads.


Subject(s)
COVID-19 , Mothers , Pregnancy , Infant, Newborn , Female , Infant , Humans , SARS-CoV-2 , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M , Antibodies, Viral
10.
EBioMedicine ; 84: 104286, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36179550

ABSTRACT

BACKGROUND: Alterations in the gut microbiome have been associated with HIV infection, but the relative impact of HIV versus other factors on the gut microbiome has been difficult to determine in cross-sectional studies. METHODS: To address this, we examined the gut microbiome, serum metabolome, and cytokines longitudinally within 27 individuals before and during acute HIV using samples collected from several ongoing cohort studies. Matched control participants (n=28) from the same cohort studies without HIV but at similar behavioral risk were used for comparison. FINDINGS: We identified few changes in the microbiome during acute HIV infection, but did find alterations in serum metabolites involving secondary bile acid (lithocholate sulfate, glycocholenate sulfate) and amino acid metabolism (3-methyl-2-oxovalerate, serine, cysteine, N-acetylputrescine). Greater microbiome differences, including decreased Bacteroides spp and increased Megasphaera elsdenii, were seen when comparing pre-HIV infection visits to matched at-risk controls. Those who acquired HIV also had elevated inflammatory cytokines (TNF-α, B cell activating factor, IL-8) and bioactive lipids (palmitoyl-sphingosine-phosphoethanolamide and glycerophosphoinositol) prior to HIV acquisition compared to matched controls. INTERPRETATION: Longitudinal sampling identified pre-existing microbiome differences in participants with acute HIV compared to matched control participants observed over the same period. These data highlight the importance of increasing understanding of the role of the microbiome in HIV susceptibility. FUNDING: This work was supported by NIH/NIAID (K08AI124979; P30AI117943), NIH/NIDA (U01DA036267; U01DA036939; U01DA036926; U24DA044554), and NIH/NIMH (P30MH058107; R34MH105272).


Subject(s)
Dysbiosis , HIV Infections , B-Cell Activating Factor , Bile Acids and Salts , Biomarkers , Cross-Sectional Studies , Cysteine , Humans , Interleukin-8 , Lipids , Lithocholic Acid , Serine , Seroconversion , Sphingosine , Sulfates , Tumor Necrosis Factor-alpha
11.
Emerg Infect Dis ; 28(7): 1523-1524, 2022 07.
Article in English | MEDLINE | ID: mdl-35680126

ABSTRACT

Varicella zoster virus reactivation after COVID-19 vaccination has been reported in older or immunocompromised adults. We report zoster meningitis from live-attenuated varicella vaccine reactivation in an immunocompetent child after COVID-19 vaccination. This type of case is rare; COVID-19 and varicella vaccines remain safe and effective for appropriate recipients in the pediatric population.


Subject(s)
COVID-19 , Chickenpox , Herpes Zoster Vaccine , Herpes Zoster , Meningitis , Adult , Aged , COVID-19 Vaccines , Child , Herpes Zoster/prevention & control , Humans , Vaccination
12.
Mucosal Immunol ; 15(5): 1040-1047, 2022 05.
Article in English | MEDLINE | ID: mdl-35739193

ABSTRACT

Breastfeeding protects against mucosal infections in infants. The underlying mechanisms through which immunity develops in human milk following maternal infection with mucosal pathogens are not well understood. We simulated nasal mucosal influenza infection through live attenuated influenza vaccination (LAIV) and compared immune responses in milk to inactivated influenza vaccination (IIV). Transcriptomic analysis was performed on RNA extracted from human milk cells to evaluate differentially expressed genes and pathways on days 1 and 7 post-vaccination. Both LAIV and IIV vaccines induced influenza-specific IgA that persisted for at least 6 months. Regulation of type I interferon production, toll-like receptor, and pattern recognition receptor signaling pathways were highly upregulated in milk on day 1 following LAIV but not IIV at any time point. Upregulation of innate immunity in human milk may provide timely protection against mucosal infections until antigen-specific immunity develops in the human milk-fed infant.


Subject(s)
Influenza Vaccines , Influenza, Human , Antibodies, Viral , Humans , Infant , Milk, Human , Nasal Mucosa , Vaccination , Vaccines, Attenuated , Vaccines, Inactivated
13.
Front Immunol ; 13: 835830, 2022.
Article in English | MEDLINE | ID: mdl-35273611

ABSTRACT

CD8+ T cells have key protective roles in many viral infections. While an overall Th1-biased cellular immune response against SARS-CoV-2 has been demonstrated, most reports of anti-SARS-CoV-2 cellular immunity have evaluated bulk T cells using pools of predicted epitopes, without clear delineation of the CD8+ subset and its magnitude and targeting. In recently infected persons (mean 29.8 days after COVID-19 symptom onset), we confirm a Th1 bias (and a novel IL-4-producing population of unclear significance) by flow cytometry, which does not correlate to antibody responses against the receptor binding domain. Evaluating isolated CD8+ T cells in more detail by IFN-γ ELISpot assays, responses against spike, nucleocapsid, matrix, and envelope proteins average 396, 901, 296, and 0 spot-forming cells (SFC) per million, targeting 1.4, 1.5, 0.59, and 0.0 epitope regions respectively. Nucleocapsid targeting is dominant in terms of magnitude, breadth, and density of targeting. The magnitude of responses drops rapidly post-infection; nucleocapsid targeting is most sustained, and vaccination selectively boosts spike targeting. In SARS-CoV-2-naïve persons, evaluation of the anti-spike CD8+ T cell response soon after vaccination (mean 11.3 days) yields anti-spike CD8+ T cell responses averaging 2,463 SFC/million against 4.2 epitope regions, and targeting mirrors that seen in infected persons. These findings provide greater clarity on CD8+ T cell anti-SARS-CoV-2 targeting, breadth, and persistence, suggesting that nucleocapsid inclusion in vaccines could broaden coverage and durability.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Nucleocapsid/immunology , SARS-CoV-2/physiology , Antibodies, Viral/metabolism , Broadly Neutralizing Antibodies/metabolism , Cells, Cultured , Enzyme-Linked Immunospot Assay , Humans , Molecular Targeted Therapy , Peptides/genetics , Peptides/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , United States , Vaccination
14.
Pediatr Res ; 92(4): 1140-1145, 2022 10.
Article in English | MEDLINE | ID: mdl-35042956

ABSTRACT

BACKGROUND: Genomic RNA of severe acute respiratory syndrome-associated coronavirus type 2 (SARS-CoV-2) has been detected in the breast milk of lactating women, but its pathological significance has remained uncertain due to the small size of prior studies. METHODS: Breast milk from 110 lactating women was analyzed by reverse transcription-polymerase chain reaction (285 samples) and viral culture (160 samples). Those containing SARS-CoV-2 viral RNA (vRNA) were examined for the presence of subgenomic RNA (sgRNA), a putative marker of infectivity. RESULTS: Sixty-five women had a positive SARS-CoV-2 diagnostic test, 9 had symptoms but negative diagnostic tests, and 36 symptomatic women were not tested. SARS-CoV-2 vRNA was detected in the milk of 7 (6%) women with either a confirmed infection or symptomatic illness, including 6 of 65 (9%) women with a positive SARS-CoV-2 diagnostic test. Infectious virus was not detected in any culture and none had detectable sgRNA. In control experiments, infectious SARS-CoV-2 could be cultured after addition to breastmilk despite several freeze-thaw cycles, as it occurs in the storage and usage of human milk. CONCLUSIONS: SARS-CoV-2 RNA can be found infrequently in the breastmilk after recent infection, but we found no evidence that breastmilk contains an infectious virus or that breastfeeding represents a risk factor for transmission of infection to infants. IMPACT: This article goes beyond prior small studies to provide evidence that infectious SARS-CoV-2 is not present in the milk of lactating women with recent infection, even when SARS-CoV-2 RNA is detected. Recent SARS-CoV-2 infection or detection of its RNA in human milk is not a contraindication to breastfeeding.


Subject(s)
COVID-19 , Mastitis , Infant , Female , Humans , Male , SARS-CoV-2 , Milk, Human , RNA, Viral , COVID-19/diagnosis , Lactation , Breast Feeding
15.
Clin Infect Dis ; 74(7): 1166-1173, 2022 04 09.
Article in English | MEDLINE | ID: mdl-34292319

ABSTRACT

BACKGROUND: Sentiments of vaccine hesitancy and distrust in public health institutions have complicated the government-led coronavirus disease 2019 (COVID-19) vaccine control strategy in the United States. As the first to receive the vaccine, COVID-19 vaccine attitudes among frontline workers are consequential for COVID-19 control and public opinion of the vaccine. METHODS: In this study, we used a repeated cross-sectional survey administered at 3 time points between 24 September 2020 and 6 February 2021 to a cohort of employees of the University of California, Los Angeles Health and the Los Angeles County Fire Department. The primary outcome of interest was COVID-19 vaccination intent and vaccine uptake. RESULTS: Confidence in COVID-19 vaccines and vaccine uptake rose significantly over time. At survey 1, confidence in vaccine protection was 46.4% among healthcare workers (HCWs) and 34.6% among first responders (FRs); by survey 3, this had risen to 90.0% and 75.7%, respectively. At survey 1, about one-third of participants intended to receive a vaccine as soon as possible. By survey 3, 96.0% of HCWs and 87.5% of FRs had received a COVID-19 vaccine. CONCLUSIONS: Attitudes toward vaccine uptake increased over the study period, likely a result of increased public confidence in COVID-19 vaccines, targeted communications, a COVID-19 winter surge in Los Angeles County, and ease of access from employer-sponsored vaccine distribution.


Subject(s)
COVID-19 , Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Cross-Sectional Studies , Health Personnel , Humans , Los Angeles/epidemiology , Vaccination
16.
AIDS Res Hum Retroviruses ; 38(3): 173-180, 2022 03.
Article in English | MEDLINE | ID: mdl-34969255

ABSTRACT

In October of 2020, researchers from around the world met online for the sixth annual International Workshop on Microbiome in HIV Pathogenesis, Prevention, and Treatment. New research was presented on the roles of the microbiome on immune response and HIV transmission and pathogenesis and the potential for alterations in the microbiome to decrease transmission and affect comorbidities. This article presents a summary of the findings reported.


Subject(s)
HIV Infections , Microbiota , Comorbidity , HIV Infections/prevention & control , Humans , Microbiota/physiology
17.
AIDS ; 36(1): 49-58, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34873092

ABSTRACT

OBJECTIVE: The rectal microbiome was examined to assess the relationship between the microbiome and liver disease in HIV-infection. DESIGN: Eighty-two HIV-1 mono-infected individuals from the PROSPEC-HIV-study (NCT02542020) were grouped into three liver health categories based on results of controlled attenuation parameter (CAP) and liver stiffness measurement (LSM) of transient elastography: normal (n = 30), steatosis (n = 30), or fibrosis (n = 22). METHODS: Liver steatosis and fibrosis were defined by CAP at least 248 dB/m and LSM at least 8.0 kPa, respectively. 16S rRNA gene and whole genome shotgun metagenomic sequencing were performed on rectal swabs. Bacterial differences were assessed using zero-inflated negative binomial regression and random forests modeling; taxonomic drivers of functional shifts were identified using FishTaco. RESULTS: Liver health status explained four percentage of the overall variation (r2 = 0.04, P = 0.003) in bacterial composition. Participants with steatosis had depletions of Akkermansia muciniphila and Bacteroides dorei and enrichment of Prevotella copri, Finegoldia magna, and Ruminococcus bromii. Participants with fibrosis had depletions of Bacteroides stercoris and Parabacteroides distasonis and enrichment of Sneathia sanguinegens. In steatosis, functional analysis revealed increases in primary and secondary bile acid synthesis encoded by increased Eubacterium rectale, F. magna, and Faecalibacterium prausnitzii and decreased A. muciniphila, Bacteroides fragilis and B. dorei. Decreased folate biosynthesis was driven by similar changes in microbial composition. CONCLUSION: HIV mono-infection with steatosis or fibrosis had distinct microbial profiles. Some taxa are similar to those associated with non-alcoholic fatty liver disease in HIV-negative populations. Further studies are needed to define the role of the gut microbiota in the pathogenesis of liver disease in HIV-infected persons.


Subject(s)
Elasticity Imaging Techniques , Fatty Liver , HIV Infections , Liver Cirrhosis , Brazil/epidemiology , Fatty Liver/microbiology , Fatty Liver/pathology , HIV Infections/complications , HIV Infections/pathology , Humans , Liver/diagnostic imaging , Liver/pathology , Liver Cirrhosis/microbiology , Liver Cirrhosis/pathology , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/pathology , Pilot Projects , RNA, Ribosomal, 16S/genetics
18.
PLoS One ; 16(11): e0259703, 2021.
Article in English | MEDLINE | ID: mdl-34748607

ABSTRACT

Two mRNA vaccines (BNT162b2 and mRNA-1273) against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) are globally authorized as a two-dose regimen. Understanding the magnitude and duration of protective immune responses is vital to curbing the pandemic. We enrolled 461 high-risk health services workers at the University of California, Los Angeles (UCLA) and first responders in the Los Angeles County Fire Department (LACoFD) to assess the humoral responses in previously infected (PI) and infection naïve (NPI) individuals to mRNA-based vaccines (BNT162b2/Pfizer- BioNTech or mRNA-1273/Moderna). A chemiluminescent microparticle immunoassay was used to detect antibodies against SARS-CoV-2 Spike in vaccinees prior to (n = 21) and following each vaccine dose (n = 246 following dose 1 and n = 315 following dose 2), and at days 31-60 (n = 110) and 61-90 (n = 190) following completion of the 2-dose series. Both vaccines induced robust antibody responses in all immunocompetent individuals. Previously infected individuals achieved higher median peak titers (p = 0.002) and had a slower rate of decay (p = 0.047) than infection-naïve individuals. mRNA-1273 vaccinated infection-naïve individuals demonstrated modestly higher titers following each dose (p = 0.005 and p = 0.029, respectively) and slower rates of antibody decay (p = 0.003) than those who received BNT162b2. A subset of previously infected individuals (25%) required both doses in order to reach peak antibody titers. The biologic significance of the differences between previously infected individuals and between the mRNA-1273 and BNT162b2 vaccines remains uncertain, but may have important implications for booster strategies.


Subject(s)
COVID-19 Vaccines , COVID-19/immunology , COVID-19/prevention & control , Immunity, Humoral , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Academic Medical Centers , Antibodies, Viral/immunology , Antibody Formation , BNT162 Vaccine , California/epidemiology , Emergency Medical Services , Emergency Responders , Health Personnel , Humans , Immunoassay , RNA, Messenger/metabolism , Universities
19.
Front Microbiol ; 12: 713234, 2021.
Article in English | MEDLINE | ID: mdl-34475864

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease in western countries both in children and adults. Metabolic dysregulation associated with gut microbial dysbiosis may influence disease progression from hepatic steatosis to inflammation and subsequent fibrosis. Using a multi-omics approach, we profiled the oral and fecal microbiome and plasma metabolites from 241 predominantly Latino children with non-alcoholic steatohepatitis (NASH), non-alcoholic fatty liver (NAFL), and controls. Children with more severe liver pathology were dysbiotic and had increased gene content associated with lipopolysaccharide biosynthesis and lipid, amino acid and carbohydrate metabolism. These changes were driven by increases in Bacteroides and concomitant decreases of Akkermansia, Anaerococcus, Corynebacterium, and Finegoldia. Non-targeted mass spectrometry revealed perturbations in one-carbon metabolism, mitochondrial dysfunction, and increased oxidative stress in children with steatohepatitis and fibrosis. Random forests modeling of plasma metabolites was highly predictive of non-alcoholic steatohepatitis (NASH) (97% accuracy) and hepatic fibrosis, steatosis and lobular inflammation (93.8% accuracy), and can differentiate steatohepatitis from simple steatosis (90.0% accuracy). Multi-omics predictive models for disease and histology findings revealed perturbations in one-carbon metabolism, mitochondrial dysfunction, and increased oxidative stress in children with steatohepatitis and fibrosis. These results highlight the promise of non-invasive biomarkers for the growing epidemic of fatty liver disease.

20.
J Clin Pediatr Neonatol ; 1(1): 9-20, 2021.
Article in English | MEDLINE | ID: mdl-34553192

ABSTRACT

Mother-to-child transmission (MTCT) through breastfeeding remains a major source of pediatric HIV-1 infection worldwide. To characterize plasma HIV-1 subtype C populations from infected mothers during pregnancy that related to subsequent breast milk transmission, an exploratory study was designed to apply next generation sequencing and a custom bioinformatics pipeline for HIV-1 gp41 extending from heptad repeat region 2 (HR2) through the membrane proximal external region (MPER) and the membrane spanning domain (MSD). MPER harbors linear and highly conserved epitopes that repeatedly elicits HIV-1 neutralizing antibodies with exceptional breadth. Viral populations during pregnancy from women who transmitted by breastfeeding, compared to those who did not, displayed greater biodiversity, more frequent amino acid polymorphisms, lower hydropathy index and greater positive charge. Viral characteristics were restricted to MPER, failed to extend into flanking HR2 or MSD regions, and were unrelated to predicted neutralization resistance. Findings provide novel parameters to evaluate an association between maternal MPER variants present during gestation and lactogenesis with subsequent transmission outcomes by breastfeeding. IMPORTANCE: HIV-1 transmission through breastfeeding accounts for 39% of MTCT and continues as a major route of pediatric infection in developing countries where access to interventions for interrupting transmission is limited. Identifying women who are likely to transmit HIV-1 during breastfeeding would focus therapies, such as broad neutralizing HIV monoclonal antibodies (bn-HIV-Abs), during the breastfeeding period to reduce MTCT. Findings from our pilot study identify novel characteristics of gestational viral MPER quasispecies related to transmission outcomes and raise the possibility for predicting MTCT by breastfeeding based on identifying mothers with high-risk viral populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...